Iron overload in thalassemia major and sickle cell disease

Dr Fleur Samantha Benghiat

Brussels, Belgium

21.11.2015
DISCLOSURES

- None
THIS TALK IS APPLICABLE FOR:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definite</th>
<th>Probable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalassemia’s</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sickle cell disease</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Membrane disorders (e.g. sferocytosis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzym defects (e.g. PKD, G6PD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other forms of hemolytic disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEARNING OBJECTIVES

1. Red blood cells (RBC)
 - Life of a RBC
 - Hemoglobin
 - Sickle cell disease
 - Thalassemia Major
 - Chronic blood transfusion

2. Iron
 - Distribution of iron
 - Iron overload
 - Iron toxicity
 - Associated complications
 - Diagnosis
 - Treatment: Iron chelators
RED BLOOD CELLS

BONE MARROW

ERYTHROPOIESIS

Red blood cells = Erythrocytes

RBC FUNCTION

Oxygen transportation

O₂
HEMOGLOBIN

Each red blood cell contains several thousand hemoglobin molecules

Oxygen binds to iron on the hemoglobin molecule

Oxyhemoglobin: Hb + O₂ → HbO₂
THALASSEMIA MAJOR: NO β-CHAIN PRODUCTION

- Bone marrow ineffective erythropoiesis
- Severe anemia
- Iron absorption +++
- Iron overload
- Marrow expansion

Oxyhemoglobin: Hb + O$_2$ \rightarrow HBO$_2$
SICKLE CELL DISEASE: MUTATION ON THE β-CHAIN

SICKLE CELL

Destruction

ANEMIA

Vaso-occlusion

Chronic Organ Damage

Oxyhemoglobin: $\text{Hb} + \text{O}_2 \rightarrow \text{HbO}_2$
SICKLE CELL DISEASE: TREATMENT

- **Treatment**
 - Vaso-occlusion prevention
 - Avoid cold, dehydration,…
 - Management of pain
 - Hydroxyurea
 - Transfusions
 - Only for severe complications
LEARNING OBJECTIVES

1. Red blood cells (RBC)
 - Life of a RBC
 - Hemoglobin
 - Sickle cell disease
 - Thalassemia Major
 - Chronic blood transfusion

2. Iron
 - Distribution of iron
 - Iron overload
 - Iron toxicity
 - Associated complications
 - Diagnosis
 - Treatment: Iron chelators
IRON : NORMAL DISTRIBUTION

- Iron in
- Plasma iron pool
- Iron out
- 1–2 mg/day
- Skin
- Gut
- Menstruation
- Pregnancy

Total body iron = 4000 mg
Transferrin

Pietrangelo A. NEJM 2004; 350:2383-2397
IRON OVERLOAD

Iron In 200mg/unit
Iron Out 1-2 mg/day
Total body iron = 4000 mg

3U/month = 600mg/month → 7.2 g/year

Chelator
Iron
Iron In
Iron Out
CIRRHOSIS
COMPLICATIONS OF IRON OVERLOAD

Pituitary → impaired growth, infertility
Thyroid → hypothyroidism
Heart → cardiomyopathy, heart failure
Liver → hepatic cirrhosis, cancer
Pancreas → diabetes mellitus
Gonads → hypogonadism

In the absence of treatment
Damages are inevitable
→ Lethal complications
Liver Iron Concentration (LIC)

Percutaneous liver biopsy

Liver

A small slender core of tissue is removed with a biopsy needle

↑ Ferritin ≠ ↑ Iron burden
BUT
↓ Ferritin = ↓ Iron burden

Invasive

Noninvasive

Liver and cardiac MRI (Magnetic Resonance Imaging)
MAGNETIC RESONANCE IMAGING (MRI) = GOLD STANDARD

- Before treatment
- After treatment

Heart

Liver
TREATMENT: WHAT IS CHELATION THERAPY?

Chelator + Iron \rightarrow Chelate

Toxic

Chelator + Iron \rightarrow Excretion

With the courtesy of Dr Axelle Gilles
IRON CHELATION THERAPY IMPROVES SURVIVAL IN THALASSAEMIA

Well treated
Ferritin < 2500

Poorly treated
Ferritin > 2500

When to start chelation:
- Prior transfusions
- Evidence of chronic iron overload

After 120 mL/kg pRBC
(~ After 10-20 units)
OR
Serum ferritin > 800 - 1000 μg/L\(^1,2\)
(constantly)
OR
LIC ≥ 5 - 7 mg Fe/g dw\(^1,2\)

TREATMENT: IRON CHELATING AGENTS

<table>
<thead>
<tr>
<th>Property</th>
<th>Deferoxamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usual dose (mg/kg/day)</td>
<td>25–50</td>
</tr>
<tr>
<td>Route</td>
<td>sc, iv (8–12 hours, 5 days/week)</td>
</tr>
<tr>
<td>Half-life</td>
<td>20–30 minutes</td>
</tr>
<tr>
<td>Excretion</td>
<td>Urinary, fecal</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>Local reactions, Auditory, Ocular, Growth retardation, Allergy</td>
</tr>
<tr>
<td>Indication</td>
<td>Transfusional iron overload</td>
</tr>
</tbody>
</table>

Adapted from Brittenham GM. N Engl J Med 2011;364:146
SIDE EFFECTS MANAGEMENT: DEFERASIROX

<table>
<thead>
<tr>
<th>Side effect</th>
<th>Frequency</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea, vomiting</td>
<td>15-26%</td>
<td>Transient evening, with or after food</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td></td>
<td>Divide dose / ↓ dose then ↑</td>
</tr>
<tr>
<td>Diarrhea (! Lactose)</td>
<td>5 – 20%</td>
<td>Lactase / Loperamide /↓ dose</td>
</tr>
</tbody>
</table>

Side Effects Management: Deferiprone

<table>
<thead>
<tr>
<th>Side effect</th>
<th>Frequency</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea, abd pain, diarrhea</td>
<td>3 – 25%</td>
<td>Transient</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>If not, Loperamide, ↓ dose</td>
</tr>
</tbody>
</table>

Deferoxamine and iron chelation therapy in thalassemia major and sickle cell disease.

Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease.
WHEN TO STOP CHELATION THERAPY?

- **Transfusion-dependent patients**
 - NEVER STOP CHELATION
 - Dose reduction if ferritin levels $< 1000 \mu g/L$
 - Avoid overchelation

- **Transfusion-independent patients**
 - Reduce dose if ferritin $< 1000 \mu g/L$
 - Stop chelation2
 - Ferritin $\leq 300 \mu g/L$
 - LIC $\leq 3 \text{ mg Fe/g dw}$

CONCLUSION: ADHERENCE TO CHELATION THERAPY

- **Adherence = Success**
- **Therapeutic alliance Doctor + Patient**
 - Involvement of patients in decisions → self-management
 - Reviews of results (MRI, ferritin levels…)
- **Administration**
 - prefer oral
- **Side effects**
 - Strict control
 - Monitoring → Prevention
 - Dose adjustment

Acute: simple transfusion

- Surgery (selected cases)
- Severe symptomatic anemia
 - Splenic sequestration
 - Severe or long-lasting aplastic crises
- Severe complications
 - Acute CNS stroke
 - Acute chest syndrome
 - Multiple-organ failure syndrome

Thalassemia major

- **Transfusions**
 - 1st year of life
 - Chronic transfusion
 - $\text{Hb} > 9.5 - 10.5 \text{g/dL}$
- **Increased iron absorption**

→ **Higher and earlier iron load**
 - Growth / sexual dvp
 - Liver overload by 10 yo
 - Extra-hepatic iron spread
 - Heart, endocrine glands…

Sickle cell disease

- **Transfusions**
 - Starts later
 - Transfusion regime
 - Top up \leftrightarrow exchange
 - Sporadic \leftrightarrow chronic
- **Less increased iron absorption**
- **Urinary iron loss (hemolysis)**

→ **Lower and later iron load**
 - No effect on growth
 - Less cardiac and endocrine involvement

IRON TOXICITY

INFECTIONS ↔ TISSUES IRON OVERLOAD → CANCER

FREE RADICALS → OXIDATIVE DAMAGE

CELL DEATH – FIBROSIS

With the courtesy of Dr Axelle Gilles
IRON OVERLOAD – WORK UP

- **Pituitary** → LH, FSH, GH, ACTH
- **Para/Thyroid** → TSH, T3, T4 – PTH, D-Vit, Ca, P
- **Heart** → MRI T2*, LVEF, EKG
- **Liver** → MRI T2*, abdominal echography
- **Pancreas** → Glycemia, Oral Glucose Tolerance Test
- **Gonads** → Estradiol, Progesteron, Testosterone