EXTERNAL QUALITY ASSESSMENT FOR HAEMOGLOBIN A$_2$

Dr Barbara Wild
The importance of Hb A₂ measurement

- Accurate and reliable measurement of Hb A₂ is essential for the diagnosis of beta thalassaemia trait

 Small difference (if any) between normal & abnormal levels

- Antenatal women should be screened for beta thalassaemia trait

 Carriers: recommend partner testing prediction of genetic risk

- Failure to detect condition *may* result in newborn with a medically significant condition
UKNEQAS: UK National External Quality Assessment Scheme

- All laboratories undertaking antenatal screening in England must participate in EQA scheme

 Required by: Accreditation bodies
 : National Screening Programme

- UKNEQAS’ Abnormal Haemoglobins Scheme
 issues 6 surveys per year, 3 samples per survey

- Specimens are accompanied by information on FBC, age, gender, ethnic group and clinical condition
UKNEQAS: UK National External Quality Assessment Scheme

- Participants are required to give analytical results and an interpretation.

- With increase in technologies:
 Results of Hb A$_2$ measurement related to methodology used.

Identified differences in values obtained from different technologies and/or kits.
National Sickle & Thalassaemia Screening Programme

• Established to provide a linked screening programme for antenatal women and newborn
• Universal screening
• Established laboratory standards
• Standardised reporting formats
• Standardised methodology (newborn)

• Decision algorithm (antenatal)
Review of Hb A$_2$ Data 2006-2008

- Review historic data for Hb A$_2$
 - Trends in Hb A$_2$ quantitation
 - Methodology changes
 - Differences in interpretation

- Develop and evaluate more sensitive indicators for monitoring performance

- Gather more information to evaluate the 3.5% cut-off for beta thalassaemia carrier status
Methodology 2000-2008

- Methodology for Hb A₂ measurement:
 - Changes in methods used (e.g. column chromatography, electrophoresis, HPLC)
 - Changes in analysers used (where HPLC analyser group is given)

Note: only UK data will be presented in this talk
UK Hb A₂ analysis methods (2000-2008)
Change in CV for Hb A\textsubscript{2} measurement 2000-2008
Distribution Curves

• Plotting the median Hb A₂ of the data set ± 3SDs

• Plotted all methods data and the data of the six largest method/analyser groups for all surveys from 2006 to mid-2008 to look for trends

• Later analysed the results of borderline Hb A₂ sample 0902AH1 (all methods trimmed mean = 3.7%)
Normal sample: Hb A2 2.6%
Beta thal trait sample: Hb A$_2$ 4.8%
Borderline sample: Hb A₂ 3.7%
Hb A₂ Assessment

• Hb A₂ assessment codes:
 - low, normal, high or uncertain

• Results ‘consensus’
 • if >85% of participants gave that answer

‘outwith consensus’ groups since 2006:
- Outwith consensus Hb A₂ result
- Transcription or assessment error
- Varying normal ranges between participants
Hb A$_2$ Assessment

- Outwith consensus result: 26.6%
- Varying normal range: 36.7%
- Transcription/assessment error: 5.1%
- Combination of reasons: 36.1%
Hb A₂ Reference Ranges
Beta thal trait specimens 2006 - 2008

‘No evidence of beta thalassaemia trait’

30 participants

- Out with consensus HbA2 result
- Transcription/interpretation error
- Combination of reasons including varying normal range
0604AH4:
- 165 UK laboratories
- All methods trimmed mean = 3.7%
- Hb A₂ 3.5% or greater:
 - 16 did not give an interpretation of beta thalassaemia carrier
 - 34 did not categorise the Hb A₂ as ‘high’
- 33 gave an Hb A₂ value of 3.4% or less

0902AH1:
- 172 UK laboratories
- All methods trimmed mean = 3.7%
- Hb A₂ 3.5% or greater:
 - 22 did not give an interpretation of beta thalassaemia carrier
 - 37 did not categorise the Hb A₂ as ‘high’
- 26 gave an Hb A₂ value of 3.4% or less
Table 2. Hb A₂ results for CPD-A1 blood (AH0501EX2)

<table>
<thead>
<tr>
<th>Method</th>
<th>Median HbA₂ (%)</th>
<th>Est SD</th>
<th>CV%</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Chromatography (All)</td>
<td>2.70</td>
<td>0.22</td>
<td>8.2</td>
<td>61</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Electrophoresis & elution (All)</td>
<td>2.65</td>
<td>0.13</td>
<td>4.9</td>
<td>6</td>
<td>1.9</td>
<td>3.1</td>
</tr>
<tr>
<td>HPLC (All)</td>
<td>2.50</td>
<td>0.30</td>
<td>11.9</td>
<td>103</td>
<td>1.8</td>
<td>3.1</td>
</tr>
<tr>
<td>BioRad (All)</td>
<td>2.60</td>
<td>0.15</td>
<td>5.8</td>
<td>56</td>
<td>1.9</td>
<td>3.1</td>
</tr>
<tr>
<td>BioRad Variant Classic</td>
<td>2.50</td>
<td>0.07</td>
<td>3.0</td>
<td>14</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>BioRad Variant II Dual</td>
<td>2.30</td>
<td>0.09</td>
<td>4.0</td>
<td>8</td>
<td>2.2</td>
<td>2.6</td>
</tr>
<tr>
<td>BioRad Variant II Beta</td>
<td>2.60</td>
<td>0.15</td>
<td>5.7</td>
<td>32</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Menarini HA-8160</td>
<td>2.20</td>
<td>0.19</td>
<td>8.1</td>
<td>11</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Menarini Hb Gold</td>
<td>2.20</td>
<td>0.22</td>
<td>10.1</td>
<td>17</td>
<td>1.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Primus Ultra 385</td>
<td>2.20</td>
<td>~</td>
<td>~</td>
<td>5</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>TOSOH G7</td>
<td>2.70</td>
<td>0.37</td>
<td>13.7</td>
<td>11</td>
<td>2.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

UKNEQAS
Current developments

• Instrument calibration-use of calibrant(s)

• Development of new Hb A₂ reference material

• Target value for performance scoring:
 • all methods mean
 • method-specific mean – current target
 • submethod-specific mean
Causes of ‘raised Hb A₂’

- Beta thalassaemia trait
- Unstable beta globin variants
- HIV infection - usually treatment related
- Metabolic disorder
- Other haemoglobinopathies
- Artefact, eg HbS adducts
Sickle cell trait

Normal FBC

Hb S% : 35-45

Hb A₂ may be raised

Consider omitting A₂ value from report
Hb Sβ⁺thalassaemia

<table>
<thead>
<tr>
<th>Peak Name</th>
<th>Calibrated Area %</th>
<th>Area</th>
<th>Retention Time (min)</th>
<th>Peak Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>9.0*</td>
<td>---</td>
<td>1.11</td>
<td>153554</td>
</tr>
<tr>
<td>Unknown</td>
<td>---</td>
<td>0.7</td>
<td>2.11</td>
<td>11443</td>
</tr>
<tr>
<td>Ao</td>
<td>---</td>
<td>16.2</td>
<td>2.47</td>
<td>273375</td>
</tr>
<tr>
<td>A2</td>
<td>6.5*</td>
<td>---</td>
<td>3.62</td>
<td>99298</td>
</tr>
<tr>
<td>S-window</td>
<td>---</td>
<td>68.1</td>
<td>4.50</td>
<td>1149258</td>
</tr>
</tbody>
</table>

Total Area: 1686929

F Concentration = 9.0* %
A2 Concentration = 6.5* %

*Values outside of expected ranges

Analysis comments:
δ chain variant

Consider total Hb A₂

and

review red cell indices

Note:
also check for carry-over
<table>
<thead>
<tr>
<th>Mutation</th>
<th>Origin</th>
<th>Usual mean Hb A₂ (%)</th>
<th>Usual mean MCH (pg)</th>
<th>Usual mean MCV (fl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silent β thalassaemia trait (normal MCV, MCH, and Hb A₂ %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−101 (C → T)</td>
<td>Mediterranean</td>
<td>3.3</td>
<td>28</td>
<td>85</td>
</tr>
<tr>
<td>−92 (C → T)</td>
<td>Mediterranean</td>
<td>3.5</td>
<td>28</td>
<td>82</td>
</tr>
<tr>
<td>IVSII-844 (C → G)</td>
<td>Mediterranean (Italian)</td>
<td>3.5</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>+33 C → G [64]</td>
<td>Mediterranean (Greek Cypriot)</td>
<td>3.0</td>
<td>29</td>
<td>86</td>
</tr>
<tr>
<td>+10 (−T) [65]</td>
<td>Mediterranean (Greek, one case)</td>
<td>2.6</td>
<td>32</td>
<td>97</td>
</tr>
<tr>
<td>+1480 C → G (termination codon +6 C → G)</td>
<td>Mediterranean (Greek)</td>
<td>2.7 [62]</td>
<td>28</td>
<td>88</td>
</tr>
<tr>
<td>Almost silent β thalassaemia trait (reduced MCV, MCH, normal Hb A₂ %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVSII-6 (T → C)</td>
<td>Mediterranean</td>
<td>3.5</td>
<td>23</td>
<td>71</td>
</tr>
<tr>
<td>Codon 27 (G → T)</td>
<td>Mediterranean and Middle Eastern</td>
<td>2.1</td>
<td>25</td>
<td>71</td>
</tr>
<tr>
<td>(haemoglobin Knossos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVSII-5 (G → A) Corfu δβ⁺</td>
<td>Mediterranean</td>
<td>3.5</td>
<td>26</td>
<td>70</td>
</tr>
<tr>
<td>IVSII-128 (T → C)</td>
<td>Saudi</td>
<td>3.4</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>CAP +1 (A → C)</td>
<td>South Asian</td>
<td>1.6⁺</td>
<td>23.5⁺</td>
<td>76⁺</td>
</tr>
<tr>
<td>Mutation not linked to β globin gene cluster [43]</td>
<td>Italian</td>
<td>3.9</td>
<td>23.5</td>
<td>79</td>
</tr>
<tr>
<td>+22 G → A [66]</td>
<td>Turkish, Bulgarian</td>
<td>3.9</td>
<td>23.5</td>
<td>79</td>
</tr>
<tr>
<td>Indices typical of thalassaemia trait but Hb A₂ % normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β Thalassaemia caused by deletion of the locus control region</td>
<td>Various</td>
<td>Normal</td>
<td>Typical of β thalassaemia</td>
<td>Typical of β thalassaemia</td>
</tr>
<tr>
<td>γδβ Thalassaemia</td>
<td>Various</td>
<td>Normal</td>
<td>Typical of β thalassaemia</td>
<td>Typical of β thalassaemia</td>
</tr>
</tbody>
</table>
Risk assessment

The following conditions will be missed:

• **Silent or near silent beta thalassaemia carrier**

• Possible beta thalassaemia carrier obscured by severe iron deficiency

• Alpha zero thalassaemia occurring outside of the defined at-risk family origins

• Dominant haemoglobinopathies where the woman has no haemoglobinopathy

• Any significant variant not detected by HPLC
Borderline / normal Hb A₂ value and beta thalassaemia

Normal Hb A₂ thalassaemia

- Borderline / normal Hb A₂ (3.2% – 3.8%)
- Reduced red cell indices
 eg CAP+1 A>C

Silent beta thalassaemia

- Normal Hb A₂ (2.5% – 3.8%)
- Normal red cell indices
 eg -101C>T
Measurement of Hb A₂
ICSH recommendations ISLH Oct 2011

Previous ICSH recommendations written in 1978

- Hb A₂ is measured as a percentage of haemoglobin present relative to any other haemoglobin present – not an absolute value

- Therefore analytically important to measure the A₂ and any other fractions present – separation, resolution and integration crucial

- In the presence of an Hb A₂ variant, it is the total of the normal and abnormal Hb A₂ which is significant
ICSH recommendations ISLH Oct 2011

- Fraction separation by
 - Electrophoresis with elution or microcolumn chromatography
 - Quantification by spectrophotometry at 415nm

- HPLC

- Capillary Zone Electrophoresis

- Capillary Isoelectric Focusing

DNA analysis is required for the characterization of beta thalassaemia mutations
ICSH recommendations ISLH Oct 2011

• Measurement of the Hb A\(_2\) alone cannot absolutely confirm or exclude the carrier state as there may be little difference between A\(_2\) in normals and some beta thalassaemia carriers.

• Precision levels should be +/- 0.1% of the final answer (SD 0.05%).

• Common beta thalassaemia trait Hb A\(_2\) = 4.0 - 6.0%
• Beta thalassaemia trait overall usually Hb A\(_2\) = 3.5 - 7.0%
• Normal subjects usually Hb A\(_2\) = 2.2-3.3%
Considerations

- Use of different normal ranges –
 variation even within same instrument group

- Use of a universal cut-off
 Instrument bias – impact on borderline values

- Examination of chromatograms

- Varying causes of a raised Hb A_2
Acknowledgements

Hannah Batterbee Royal Hallamshire Hospital

Barbara Dela Salle UKNEQAS(H)

Dr John Old
National Haemoglobinopathy Reference Laboratory, Oxford
2nd European Hemoglobinopathy Forum

Insights on the diagnosis of hemoglobin disorders

November 29th, 2011 – Madrid, Eurostars Madrid Tower Hotel