Recent progress in the diagnosis of RBC membrane and enzyme disorders
Paola Bianchi, PhD

Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico
Pathophysiology of Anemias Unit

5th European Symposium on Rare Anemias
Ferrara, 15-16 November 2013
- General overview of RBC membrane and enzyme defects
- Laboratory investigations
- Results of the ENERCA survey
Patient’s and family medical history and clinical examination
- Acute or chronic hemolytic anemia
- Intra or extravascular hemolysis
- Congenital or acquired
- Extrahematological signs

CONGENITAL CAUSES

- Blood smear analysis

 RBC morphologic abnormalities
 (spherocytes, elliptocytes, ovalocytes, stomatocytes, marked anisopoikilocytosis)

 RBC MEMBRANE DEFECTS / CDAs

 - Osmotic fragility tests
 - Ektacytometry
 - EMA binding
 - SDS-PAGE
 - Molecular analysis

 Acute hemolysis
 Chronic hemolysis

- Hereditary Spherocytosis
- Hereditary Elliptocytosis
- SAO
- Hereditary Stomatocytosis
- CDAs

- **Hereditary Elliptocytosis**
- **SAO**
- **Hereditary Stomatocytosis**
- **CDAs**

ACQUIRED CAUSES

- Direct Antiglobulin Test (DAT)

 IMMUNE HEMOLYTIC ANAEMIAS
 - AIHA
 - DHTT (in recently tx pts.)

 RBC ENZYMOPATHIES

 - Study of RBC metabolism

 Acute hemolysis
 Chronic hemolysis

 - **PP-shunt**
 - **Glycolysis**
 - **Nucleotide metab**

 MECHANICAL HEMOLYSIS

 - INFECT/TOXIC CAUSES
 - Wilson disease

 - INFECT/TOXIC CAUSES
 - PNH

 - INFECT/TOXIC CAUSES
 - Schistocytes

 - INFECT/TOXIC CAUSES
 - CD55/59

 - INFECT/TOXIC CAUSES
 - positive
 - negative

 - INFECT/TOXIC CAUSES
 - negative
 - positive

 - INFECT/TOXIC CAUSES
 - no

 - INFECT/TOXIC CAUSES
 - Reconsider congenital causes or DAT-negative AIHA
CONGENITAL RED CELL MEMBRANE DISORDERS

Hereditary spherocytosis (HS)
1:2000 Dom.Tr (75% of cases)

Hereditary elliptocytosis (HE)
1:4000 Dom. Tr

Hered. Pyropoikilocytosis (HPP)
Non-Dom. Tr

Hereditary stomatocytosis (HSt)
1:50000 – 1:100000 Dom. Tr
HEREDITARY SPHEROCYTOSIS

- Dominant transmission in 75% of cases
- Anemia: from very severe to compensated
- Variable splenomegaly and jaundice
- Presence of spherocytes in peripheral blood
- Response to splenectomy
RED CELL MEMBRANE CYTOSKELETON - INTERACTIONS

"Horizontal interactions"
RED CELL MEMBRANE CYTOSKELETON - INTERACTIONS

“Vertical interactions”
SDS- PAGE analysis of red cell membrane proteins

- α-spectrin
- β-spectrin
- Band 3
- Ankyrin

Trypsin digestion

- α 1/80
- β IV/74
- β II/65
- α III/52
- α II/46
- α IV-V/41
- β III/33
- β I/28
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical features</td>
<td>Splenomegaly almost always</td>
</tr>
<tr>
<td>Laboratory red cell indices</td>
<td>(↓Hb, ↓MCV, ↑MCHC, ↑% hyperdense cells, ↑RDW, ↑reticulocyte count)</td>
</tr>
<tr>
<td>Blood film</td>
<td>Abnormal morphology – spherocytes</td>
</tr>
<tr>
<td>Direct antiglobulin test</td>
<td>Negative</td>
</tr>
<tr>
<td>Evidence of haemolysis</td>
<td>Raised bilirubin; reticulocytosis</td>
</tr>
</tbody>
</table>

MCV, mean cell volume; MCHC, mean cell Hb concentration; RDW, red cell distribution width.
CLINICAL DATA IN 259 NOT SPLENECTOMIZED HS PATIENTS
(139 B3; 81 Sp; 9 Ank or Sp/Ank; 2 Band 4.2; 28 undetected)
(< 18 yrs = 121 ; >18 yrs = 138)

ANEMIA: severe 6%, moderate 16%, mild 40%, compensated 38%

EXCHANGE TRANSFUSION: 14/82 cases

Mariani et al, Haematologica, 2008
Haematologic parameters of 259 not splenectomized HS patients

Not always standard hematologic parameters give specific diagnostic indications!
Screening tests for the diagnosis of Hereditary Spherocytosis

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmotic fragility (OF) test</td>
<td>Measure absorbance at 540 nm for fresh blood and after 24 h incubation. Plot a graph of % haemolysis versus NaCl concentration</td>
<td>Affected by elevated reticulocyte counts Also increased in AIHA</td>
</tr>
<tr>
<td>Acidified glycerol lysis test (AGLT)</td>
<td>Measure the time taken for absorbance of red cell suspension at 625 nm in glycerol to fall to half of its original value before glycerol addition (AGLT50)</td>
<td>Also positive in AIHA, enzyme deficiency, pregnant women, chronic renal failure and myelodysplastic syndrome.</td>
</tr>
<tr>
<td>The Pink test (Vettore & Zanella, 1984)</td>
<td>Measure the time taken for absorbance of red cell suspension at 625 nm in glycerol to fall to half of its original value before glycerol addition (AGLT50)</td>
<td>Also positive in AIHA, enzyme deficiency, pregnant women, chronic renal failure and myelodysplastic syndrome.</td>
</tr>
<tr>
<td>Hypertonic cryohaemolysis test</td>
<td>% cryohaemolysis at 540 nm after transfer of red cells from 37°C to 0°C for 10 min</td>
<td>Positive results for HS, some CDAII and Melanesian elliptocytosis</td>
</tr>
<tr>
<td>Eosin-5-maleimide (EMA) binding</td>
<td>Reduced fluorescence (green) intensity of EMA-labelled red cells by flow cytometry</td>
<td>Distinct histograms for red cells of HS. Reduced in CDAII, cryohydrocytosis, SAO.</td>
</tr>
</tbody>
</table>

Note: Bolton-Maggs et al, Br J Haematol 126:455-474, 2004
EMA-binding test

Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia

MAY-JEAN KING,^1^ JUDITH BEHRENS,^2^ CHRIS ROGERS,^3^ CLAIRE FLYNN,^4^ DAVID GREENWOOD^5^ AND KEITH CHAMBERS^6^

- Direct test

- Measures the fluorescence intensity of intact red cells labelled with the dye eosin-5-maleimide, interacting with the protein band 3 complex Lys 430

- A decrease of fluorescence intensity is also detected with spectrin- and protein 4.2-deficient HS red cells.

Sensitivity = 92.7%
Specificity = 99.1%
Sensitivity of diagnostic tests according to biochemical defect
150 HS patients

<table>
<thead>
<tr>
<th></th>
<th>EMA-binding</th>
<th>GLT</th>
<th>AGLT</th>
<th>Pink</th>
<th>OF NaCl fresh</th>
<th>OF NaCl inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HS patients</td>
<td>140/150 (93%)</td>
<td>92/150 (61%)</td>
<td>143/150 (95%)</td>
<td>136/150 (91%)</td>
<td>102/150 (68%)</td>
<td>122/150 (81%)</td>
</tr>
<tr>
<td>HS with biochemical defect</td>
<td>132/141 (94%)</td>
<td>90/141 (64%)</td>
<td>135/141 (96%)</td>
<td>131/141 (93%)</td>
<td>100/141 (71%)</td>
<td>119/141 (84%)</td>
</tr>
<tr>
<td>Spectrin</td>
<td>68/73 (93%)</td>
<td>45/73 (61%)</td>
<td>70/73 (96%)</td>
<td>67/73 (92%)</td>
<td>51/73 (70%)</td>
<td>62/73 (85%)</td>
</tr>
<tr>
<td>Band 3</td>
<td>55/59 (93%)</td>
<td>38/59 (64%)</td>
<td>56/59 (93%)</td>
<td>55/59 (93%)</td>
<td>43/59 (73%)</td>
<td>49/59 (83%)</td>
</tr>
<tr>
<td>Combined spectrin/ankyrin</td>
<td>9/9 (100%)</td>
<td>7/9 (78%)</td>
<td>9/9 (100%)</td>
<td>9/9 (100%)</td>
<td>6/9 (67%)</td>
<td>8/9 (89%)</td>
</tr>
<tr>
<td>HS with undetectable defect</td>
<td>8/9 (88%)</td>
<td>2/9 (22%)</td>
<td>8/9 (88%)</td>
<td>2/9 (22%)</td>
<td>3/9 (33%)</td>
<td>4/9 (44%)</td>
</tr>
</tbody>
</table>

93% 61% 95% 91% 68% 81%

Bianchi et al, Haematologica 2012
Sensitivity of diagnostic tests according to clinical phenotype

Bianchi et al, Haematologica 2012
Combined tests’ sensitivity in total HS cases

- All HS patients were positive to at least two different tests with the exception of two who were EMA-binding positive only.

- The combination of EMA & AGLT enabled to identify the totality of HS patients

<table>
<thead>
<tr>
<th>Test Combination</th>
<th>Number Positive/Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMA + AGLT</td>
<td>150/150 (100%)</td>
<td></td>
</tr>
<tr>
<td>EMA + OF NaCl fresh</td>
<td>143/150 (95%)</td>
<td></td>
</tr>
<tr>
<td>EMA + OF NaCl inc.</td>
<td>143/150 (95%)</td>
<td></td>
</tr>
<tr>
<td>EMA + Pink</td>
<td>149/150 (99%)</td>
<td></td>
</tr>
<tr>
<td>OF NaCl inc. + AGLT</td>
<td>146/150 (97%)</td>
<td></td>
</tr>
</tbody>
</table>

Bianchi et al, Haematologica 2012
Definition of cut-off limits for EMA binding tests

<table>
<thead>
<tr>
<th>% 30</th>
<th>% 30</th>
<th>% 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- **HS**: Hereditary Spherocytosis
- **Norm**: Normal
- **“Grey zone”**: Intermediate values between HS and Norm
- **Cut-off Normal/Hs**: Threshold for distinguishing between normal and HS
- **Cut-off Hs/Other hemolytic dis**: Threshold for distinguishing between HS and other hemolytic disorders

References

- Bianchi et al, *Diagnostic power of laboratory tests for hereditary spherocytosis… and Replays*. Haematologica 2012 97: 516-23
Disease specificity of diagnostic tests (87 not HS-hemolytic pts)
DIFFERENTIAL DIAGNOSIS OF HS AND CDAII

SDS-PAGE analysis of RBC membrane proteins

13% of patients referred with a suspect of HS were CDAII
Ectacytometry
Laser-assisted Optical Rotational Cell Analyzer

Clark et al, Blood 1984
Osmoscan Curves in patients with red cell membrane disorders
Molecular characterization of RBC membrane disorders

<table>
<thead>
<tr>
<th>Band</th>
<th>Protein</th>
<th>Associated haemolytic anaemias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-Spectrin</td>
<td>HE, HS</td>
</tr>
<tr>
<td>2</td>
<td>β-Spectrin</td>
<td>HPP</td>
</tr>
<tr>
<td>2.1</td>
<td>Ankyrin</td>
<td>HE, HS, HS in mice</td>
</tr>
<tr>
<td>2.9</td>
<td>Adducin</td>
<td>HS</td>
</tr>
<tr>
<td>3</td>
<td>Band 1</td>
<td>HE, SAO, HAC</td>
</tr>
<tr>
<td>4</td>
<td>Band 4</td>
<td>HE</td>
</tr>
<tr>
<td>4.1</td>
<td>Protein</td>
<td>HE</td>
</tr>
<tr>
<td>4.2</td>
<td>Protein</td>
<td>HE</td>
</tr>
<tr>
<td>5</td>
<td>β-Actin</td>
<td>?</td>
</tr>
<tr>
<td>6</td>
<td>Ga3PD</td>
<td>?</td>
</tr>
<tr>
<td>PAS-1</td>
<td>Glycos</td>
<td>?</td>
</tr>
<tr>
<td>PAS-2</td>
<td>Glycos</td>
<td>?</td>
</tr>
<tr>
<td>PAS-3</td>
<td>Glycos</td>
<td>?</td>
</tr>
</tbody>
</table>

*Band numbers refer to the position on SDS-PAGE electrophoresis.

Low expression α spectrin alleles (Sp α_{Lely})

SNP: IVS45 -12c/t

Alpha LELY in trans + HE Sp mutations

Hereditary Pyropoikilocytosis

Genetic counselling

HAC, hereditary acanthocytosis; HE, hereditary elliptocytosis; HS, hereditary spheroctytosis; HPP, hereditary pyropoikilocytosis; SAO, Southeast Asian ovalocytosis; Ga3PD, gyceraldehyde-3-phosphate dehydrogenase.
Survey on red cell membrane disorders and enzyme defects
Centres involved: 26
Use of diagnostic tests performed for diagnosis of red cell membrane defects

% of centers

ENERCA from: “White Book for the creation of a European Reference Network of Expert Centers in Rare Anaemias.”
Method with best specificity and sensitivity

Combination of tests:
- RBC Morphology + EMA
- EMA + AGLT
- AGLT + Cryo
- RIA + EMA + AGLT
- OF + EMA + Cryo
- Cryo + EMA + SDS
- EMA + pink + OF
- RBC Morphology + Pink
- RIA + AGLT + OF
- EMA + AGLT + SDS

Not known: 8
EMA-binding test: 3
Pink test: 1
OF: 1
Ectacytometer: 1

ENERCA from: “White Book for the creation of a European Reference Network of Expert Centers in Rare Anaemias.”
RBC metabolism

Glycolysis

Glucose

Hexose monophosphate shunt

2 NADPH

Glutathione

reducing power

Nucleotide metabolism

2 NADH

methemoglobin reduction

Rapoport-Luebering shunt

2,3-DPG

Hb-O₂ affinity

2 ATP

metabolic energy

Lactate
The type and degree of haemolysis in CNSHA depends on:
- the metabolic cycle involved
- the relative importance of the affected enzyme
- the functional properties of the mutant enzyme with regard to kinetic abnormalities and/or instability
- the ability to compensate for the enzyme deficiency by over-expressing isoenzymes or using alternative pathways
I. ENZYME DEFICIENCIES OF THE HEXOSE MONOPHOSPHATE SHUNT AND GLUTATHIONE METABOLISM

→ Inadequate levels of reduced glutathione (GSH): inability to withstand oxidative stress

→ **Acute hemolysis** induced by oxidant drugs, food, infection, stress

 Associated deficiencies:
 - Glucose-6-phosphate dehydrogenase (G6PD) (except for class I variants)
 - \(\gamma \)-Glutamylcysteine synthetase (GCS)
 - Glutathione synthetase (GSH-S)
 - Glutathione reductase (GR) (?)
II. ENZYME DEFICIENCIES OF GLYCOLYSIS AND NUCLEOTIDE METABOLISM

→ Continuously impaired ATP generation: lack of sufficient energy
→ Chronic hemolysis exacerbated by infection, pregnancy

Glycolisis
- pyruvate kinase (PK)
- hexokinase (HK)
- glucosephosphate isomerase (GPI)
- phosphofructokinase (PFK)
- aldolase
- triosephosphate isomerase (TPI)
- phosphoglycerate kinase (PGK)

Nucleotide Metabolism
- pyrimidine 5′-nucleotidase (P5N)
- adenylate kinase (AK)
Clinical heterogeneity

- Splenomegaly
- Janudice
- Iron overload (even in absence of transfusion)
- Not hematological symptoms
Chronic hemolysis and non-hematologic signs

<table>
<thead>
<tr>
<th>Ubiquitous enzyme defect</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>Hemolysis +</td>
</tr>
<tr>
<td>Phosphofructokinase (PFK)</td>
<td>+ Myopathy</td>
</tr>
<tr>
<td>Triose Phosphate Isomerase (TPI)</td>
<td>+ Neurom. dysfunctions</td>
</tr>
<tr>
<td></td>
<td>Susceptib. to infections</td>
</tr>
<tr>
<td>Phosphoglycerate Kinase (PGK)</td>
<td>+ Mental retardation</td>
</tr>
<tr>
<td></td>
<td>Neuromuscular abnorm</td>
</tr>
<tr>
<td>Aldolase</td>
<td>+ Mental retardation</td>
</tr>
<tr>
<td>Glutathione metabolism</td>
<td></td>
</tr>
<tr>
<td>(\gamma)-glutamylcysteine synthetase</td>
<td>+ Mental retardation</td>
</tr>
<tr>
<td>Glutathione synthetase</td>
<td>+ Mental retardation</td>
</tr>
</tbody>
</table>
Frequency of RBC enzyme defects

<table>
<thead>
<tr>
<th>Red cell enzyme defects associated chronic with hemolytic anemia</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate kinase deficiency</td>
<td>>500 families</td>
</tr>
<tr>
<td>Pyrimidine-5’-nucleotidase deficiency</td>
<td>>60 families</td>
</tr>
<tr>
<td>Triosephosphate isomerase deficiency</td>
<td>50 – 100 cases</td>
</tr>
<tr>
<td>Phosphofructokinase deficiency</td>
<td>50 – 100 cases</td>
</tr>
<tr>
<td>Phosphoglycerate kinase deficiency</td>
<td>40 cases</td>
</tr>
<tr>
<td>Class I glucose-6-phosphate dehydrogenase deficiency</td>
<td>>50 families</td>
</tr>
<tr>
<td>Glucose-6-phosphate isomerase deficiency</td>
<td>>50 families</td>
</tr>
<tr>
<td>Glutathione synthetase deficiency</td>
<td>>50 families</td>
</tr>
<tr>
<td>Hexokinase deficiency</td>
<td>20 cases</td>
</tr>
<tr>
<td>Adenylate kinase deficiency</td>
<td>12 families</td>
</tr>
<tr>
<td>Glutamate cysteine ligase deficiency</td>
<td>12 families</td>
</tr>
<tr>
<td>Aldolase deficiency</td>
<td>6 cases</td>
</tr>
<tr>
<td>Adenosine hyperactivity</td>
<td>3 families</td>
</tr>
<tr>
<td>Glutathione reductase deficiency</td>
<td>2 families</td>
</tr>
</tbody>
</table>

ENERCA from: “White Book for the creation of a European Reference Network of Expert Centers in Rare Anaemias.”
Laboratory diagnosis of HNSHA

- P5’N-I deficiency (Wright stained): marked basophilic stippling (2-12% of RBCs)
- PK deficiency, presence of echinocytes
Laboratory diagnosis of HNSHA

Exclusion of other causes of hemolytic anemia

Demonstration of a specific enzyme defect
(spectrophotometric assay, Beutler, 1984)

Other clinical symptoms may be helpful (e.g. neuromuscular symptoms, myopathy)

Molecular characterization of the defect
Factors that may influence enzyme activity

- Reticulocytosis (HK, PK)
- Contamination with donor RBCs in transfused patients
- Incomplete leukocyte removal
- Storage and shipment of samples (e.g. instability of PFK, TPI)
- Expression of isoenzyme in mature RBCs
- Mutant PKs with normal catalytic activity “in vitro”

RBC enzyme defects: molecular heterogeneity

<table>
<thead>
<tr>
<th>Red cell enzyme defects</th>
<th>No of cases</th>
<th>Gene</th>
<th>Chromosomal Localization</th>
<th>No. of mutations Described</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK</td>
<td>>500</td>
<td>PKLR</td>
<td>1q22</td>
<td>>200</td>
</tr>
<tr>
<td>GPI</td>
<td>>50 fam</td>
<td>GPI</td>
<td>19q13</td>
<td>31</td>
</tr>
<tr>
<td>TPI</td>
<td>31 fam</td>
<td>TPI1</td>
<td>12p13</td>
<td>18</td>
</tr>
<tr>
<td>PFK</td>
<td>>40 cases</td>
<td>PFKM</td>
<td>12p13/21q22</td>
<td>17</td>
</tr>
<tr>
<td>PGK</td>
<td>> 40 cases</td>
<td>PGK-1</td>
<td>Xq13</td>
<td>20</td>
</tr>
<tr>
<td>HK</td>
<td>20 cases</td>
<td>HK-1</td>
<td>10q22</td>
<td>5</td>
</tr>
<tr>
<td>Aldolase</td>
<td>6 cases</td>
<td>AldoA</td>
<td>16q22</td>
<td>4</td>
</tr>
</tbody>
</table>

Usefulness if genotyping:
- Prenatal testing
- Diagnosis confirmation
...If genotype is not complete → exclusion of other causes of hemolysis!
ENERCA SURVEY – 26 Centers involved
Availability of PK activity assay
ENERCA SURVEY – 26 Centers involved
Availability of rare glycolytic enzyme assay